记录如何使用 ETCD raft Library...
先说 ETCD Raft library
ETCD Raft library 作为目前使用最为广泛的 raft 库,也可以说是目前最为完善稳定的。以一个使用者的姿态来看看该如何将这个 raft library 用在自己的项目中。
这个库实现了 Raft 算法的核心内容,比如 append log 、选主、snapshot、成员变更,但是用户需要自己实现网络传输和网络IO, 用户必须实现自己的传输层,用来不同node 之间进行消息传输,用户也需要自行实现存储层用来Raft日志和状态。
ETCD Raft library 实现的功能
- Leader election
- Log replication
- Log compaction
- Membership changes
- Leadership transfer extension
- Efficient linearizable read-only queries served by both the leader and followers
- leader checks with quorum and bypasses Raft log before processing read-only queries
- followers asks leader to get a safe read index before processing read-only queries
- More efficient lease-based linearizable read-only queries served by both the leader and followers
- leader bypasses Raft log and processing read-only queries locally
- followers asks leader to get a safe read index before processing read-only queries
- this approach relies on the clock of the all the machines in raft group
More
- Optimistic pipelining to reduce log replication latency
- Flow control for log replication
- Batching Raft messages to reduce synchronized network I/O calls
- Batching log entries to reduce disk synchronized I/O
- Writing to leader's disk in parallel
- Internal proposal redirection from followers to leader
- Automatic stepping down when the leader loses quorum
Storage 接口
library 定义了一个 Storage 接口,但是需要用户自己实现
// Storage is an interface that may be implemented by the application
// to retrieve log entries from storage.
//
// If any Storage method returns an error, the raft instance will
// become inoperable and refuse to participate in elections; the
// application is responsible for cleanup and recovery in this case.
type Storage interface {
// InitialState returns the saved HardState and ConfState information.
InitialState() (pb.HardState, pb.ConfState, error)
// Entries returns a slice of log entries in the range [lo,hi).
// MaxSize limits the total size of the log entries returned, but
// Entries returns at least one entry if any.
Entries(lo, hi, maxSize uint64) ([]pb.Entry, error)
// Term returns the term of entry i, which must be in the range
// [FirstIndex()-1, LastIndex()]. The term of the entry before
// FirstIndex is retained for matching purposes even though the
// rest of that entry may not be available.
Term(i uint64) (uint64, error)
// LastIndex returns the index of the last entry in the log.
LastIndex() (uint64, error)
// FirstIndex returns the index of the first log entry that is
// possibly available via Entries (older entries have been incorporated
// into the latest Snapshot; if storage only contains the dummy entry the
// first log entry is not available).
FirstIndex() (uint64, error)
// Snapshot returns the most recent snapshot.
// If snapshot is temporarily unavailable, it should return ErrSnapshotTemporarilyUnavailable,
// so raft state machine could know that Storage needs some time to prepare
// snapshot and call Snapshot later.
Snapshot() (pb.Snapshot, error)
}
用户实现 Storage 接口用以实现持久化存储,raftexample 使用library 提供 的 MemoryStorage, 配合使用 etcd 的wal 和sanp 包可是实现持久化, 重启的时候从wal和snap中获取日志恢复MemoryStorage。
Ready struct
// Ready encapsulates the entries and messages that are ready to read,
// be saved to stable storage, committed or sent to other peers.
// All fields in Ready are read-only.
type Ready struct {
// The current volatile state of a Node.
// SoftState will be nil if there is no update.
// It is not required to consume or store SoftState.
*SoftState
// The current state of a Node to be saved to stable storage BEFORE
// Messages are sent.
// HardState will be equal to empty state if there is no update.
pb.HardState
// ReadStates can be used for node to serve linearizable read requests locally
// when its applied index is greater than the index in ReadState.
// Note that the readState will be returned when raft receives msgReadIndex.
// The returned is only valid for the request that requested to read.
ReadStates []ReadState
// Entries specifies entries to be saved to stable storage BEFORE
// Messages are sent.
Entries []pb.Entry
// Snapshot specifies the snapshot to be saved to stable storage.
Snapshot pb.Snapshot
// CommittedEntries specifies entries to be committed to a
// store/state-machine. These have previously been committed to stable
// store.
CommittedEntries []pb.Entry
// Messages specifies outbound messages to be sent AFTER Entries are
// committed to stable storage.
// If it contains a MsgSnap message, the application MUST report back to raft
// when the snapshot has been received or has failed by calling ReportSnapshot.
Messages []pb.Message
// MustSync indicates whether the HardState and Entries must be synchronously
// written to disk or if an asynchronous write is permissible.
MustSync bool
}
这个Ready结构体封装了一批更新,这些更新包括:
- pb.HardState: 包含当前节点见过的最大的term,以及在这个term给谁投过票,已经当前节点知道的commit index
- Messages: 需要广播给所有peers的消息
- CommittedEntries:已经commit了,还没有apply到状态机的日志
- Snapshot:需要持久化的快照
用户从 node struct 提供一个 ready channel 中不断的 pop 出 Ready 进行处理,library user 使用如下方法获取Ready Channel
func (n *node) Ready() <- chan Ready{ return n.readyc}
应用需要对 Ready 的处理如下:
- 将HardState, Entries, Snapshot持久化到storage。
- 将Messages(上文提到的msgs)非阻塞的广播给其他peers
- 将CommittedEntries(已经commit还没有apply)应用到状态机。
- 如果发现CommittedEntries中有成员变更类型的entry,调用node的ApplyConfChange()方法让node知道(这里和raft论文不一样,论文中只要节点收到了成员变更日志就应用)
- 调用Node.Advance()告诉raft node,这批状态更新处理完了,状态已经演进了,可以给我下一批Ready让我处理。
应用通过raft.StartNode()来启动raft中的一个副本,函数内部通过启动一个goroutine运行来启动服务
func (n *node) run(r *raft)
应用通过调用
func (n *node) Propose(ctx context.Context, data []byte) error
来Propose一个请求给raft,被raft开始处理后返回。
增删节点通过调用
func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error
node结构体包含几个重要的channel:
// node is the canonical implementation of the Node interface
type node struct {
propc chan pb.Message
recvc chan pb.Message
confc chan pb.ConfChange
confstatec chan pb.ConfState
readyc chan Ready
advancec chan struct{}
tickc chan struct{}
done chan struct{}
stop chan struct{}
status chan chan Status
logger Logger
}
- propc: propc是一个没有buffer的channel,应用通过Propose接口写入的请求被封装成Message被push到propc中,node的run方法从propc中pop出Message,append自己的raft log中,并且将Message放入mailbox中(raft结构体中的msgs []pb.Message),这个msgs会被封装在Ready中,被应用从readyc中取出来,然后通过应用自定义的transport发送出去。
- recvc: 应用自定义的transport在收到Message后需要调用
func (n *node) Step(ctx context.Context, m pb.Message) error
来把Message放入recvc中,经过一些处理后,同样,会把需要发送的Message放入到对应peers的mailbox中。后续通过自定义transport发送出去。
- readyc/advancec: readyc和advancec都是没有buffer的channel,node.run()内部把相关的一些状态更新打包成Ready结构体(其中一种状态就是上面提到的msgs)放入readyc中。应用从readyc中pop出Ready中,对相应的状态进行处理,处理完成后,调用
rc.node.Advance()
往advancec中push一个空结构体告诉raft,已经对这批Ready包含的状态进行了相应的处理,node.run()内部从advancec中得到通知后,对内部一些状态进行处理,比如把已经持久化到storage中的entries从内存(对应type unstable struct)中删除等。
-
tickc:应用定期往tickc中push空结构体,node.run()会调用tick()函数,对于leader来说,tick()会给其他peers发心跳,对于follower来说,会检查是否需要发起选主操作。
-
confc/confstatec:应用从Ready中拿出CommittedEntries,检查其如果含有成员变更类型的日志,则需要调用
func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState
这个函数会push ConfChange到confc中,confc同样是个无buffer的channel,node.run()内部会从confc中拿出ConfChange,然后进行真正的增减peers操作,之后将最新的成员组push到confstatec中,而ApplyConfChange函数从confstatec pop出最新的成员组返回给应用。
Usage
raft library 使用raft.StartNode 开启一个 node ,或是使用raft.RestartNode 从一些初始状态启动一个 node。
启动三节点 node
storage := raft.NewMemoryStorage()
c := &Config{
ID: 0x01,
ElectionTick: 10,
HeartbeatTick: 1,
Storage: storage,
MaxSizePerMsg: 4096,
MaxInflightMsgs: 256,
}
// Set peer list to the other nodes in the cluster.
// Note that they need to be started separately as well.
n := raft.StartNode(, []raft.Peer{{ID: 0x01}, {ID: 0x02}, {ID: 0x03}})
启动一个单节点集群
// Create storage and config as shown above.
// Set peer list to itself, so this node can become the leader of this single-node cluster.
peers := []raft.Peer{{ID: 0x01}}
n := raft.StartNode(c, peers)
加入新节点到集群的时候,新集群不能存在任何 peer 。首先,通过在集群内其他节点上调用ProposeConfChange将节点添加到现有集群。然后,启动新的节点,如下所示:
// Create storage and config as shown above.
n := raft.StartNode(c, nil)
重启节点
storage := raft.NewMemoryStorage()
// Recover the in-memory storage from persistent snapshot, state and entries.
storage.ApplySnapshot(snapshot)
storage.SetHardState(state)
storage.Append(entries)
c := &Config{
ID: 0x01,
ElectionTick: 10,
HeartbeatTick: 1,
Storage: storage,
MaxSizePerMsg: 4096,
MaxInflightMsgs: 256,
}
// Restart raft without peer information.
// Peer information is already included in the storage.
n := raft.RestartNode(c)
在创建了node 后,用户需要做这些:
First ,从Node.Ready()通道读取并处理其包含的更新。这些步骤可以并行执行,除了步骤2中所述。
- 将HardState,Entries和Snapshot写入storage(如果它们不为空)。如果写入 entry 的索引是 i, 那么就得丢弃索引大于 i 的所有log。
- 将所有消息发送到目的的节点。一直发送消息直到最新的HardState已经持久存储到磁盘,并且以Ready batch 方式写入所用的 entry。为了减少I/O延迟,可以应用优化使领导者与其追随者并行写入磁盘。如果任何消息类型为MsgSnap,则在发送后调用Node.ReportSnapshot()(这些消息可能很大)。注意:marshal message 不是线程安全的;确保 在marshalling 的时候没有新的 entry 。实现这一目标的最简单的方法是直接在在 raft loop 内串行执行。
- 将快照(如果有)和CommittedEntries应用到状态机。如果任何已提交的Entry具有TypeConfChange类型,则调用Node.ApplyConfChange()将其应用于该节点。此时可以通过在调用ApplyConfChange之前将NodeID字段设置为零(但是ApplyConfChange必须以某种方式调用,并且取消决定必须完全基于状态机而不是外部信息,例如观察到节点的健康状况)。
- 调用Node.Advance()来指示下一批更新的准备状态。这可以在步骤1之后的任何时间完成,尽管所有更新必须按照Ready所返回的顺序进行处理。
Second, 所有持久化的日志条目必须通过Storage接口的实现来提供。可以使用提供的MemoryStorage类型(如果在重新启动时重新填充其状态),或者可以提供自定义的磁盘支持实现。
Third,从另一个节点收到消息后,将其传递给Node.Step:
func recvRaftRPC(ctx context.Context, m raftpb.Message) {
n.Step(ctx, m)
}
最后,定期调用Node.Tick()(可能通过time.Ticker)。raft 有两个重要的超时:心跳和选举超时。但是,在 fraft library 内部抽象 "tick" 代表时间。
状态机处理循环,如下所示:
for {
select {
case <-s.Ticker:
n.Tick()
case rd := <-s.Node.Ready():
saveToStorage(rd.State, rd.Entries, rd.Snapshot)
send(rd.Messages)
if !raft.IsEmptySnap(rd.Snapshot) {
processSnapshot(rd.Snapshot)
}
for _, entry := range rd.CommittedEntries {
process(entry)
if entry.Type == raftpb.EntryConfChange {
var cc raftpb.ConfChange
cc.Unmarshal(entry.Data)
s.Node.ApplyConfChange(cc)
}
}
s.Node.Advance()
case <-s.done:
return
}
}
节点获取应用程序数据并同步到状态机,把数据序列化到slice,并调用:
n.Propose(ctx,data)
如果proposal 被 commit ,数据将出现在类型为raftpb.EntryNormal的提交的条目中。不能保证提出的命令将被提交;该命令超时后会重试。
要添加或删除集群中的节点,请申请 ConfChange struct'cc'并调用:
n.ProposeConfChange(ctx,cc)
配置更改提交后,将返回类型为raftpb.EntryConfChange已经被提交的 entry 。这必须通过以下方式应用于节点:
var cc raftpb.ConfChange
cc.Unmarshal(data)
n.ApplyConfChange(cc)
注意:ID表示集群中所有时间的唯一节点。即使旧节点被删除,给定的ID也只能使用一次。这意味着,例如IP地址可能会导致糟糕的节点ID,因为它们可能被重用。节点ID必须不为零。